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Under a reasonable assumption it is shown that the set T o t  A of pure states of a 
physical system provided with the Scott information topology is homeomorphic 
to a subset of the Cantor discontinuum. Moreover, any "smooth" nonlinear time 
evolution with the set Tot a as the phase space has a linear Hilber space 
representation. 

1. I N T R O D U C T I O N  

In Posiewnik (1985) I developed a mathemat ical  language suitable for 
the descript ion o f  physical  systems with dynamics.  My main demand  was 
that the language should reflect a consistency between dynamics  and struc- 
ture. To this purpose  I used category theory because in my opin ion  this 
theory allows one to treat the above problem in the most  natural way. I 
consider category theory as a " language of  s tructure" where all elements 
o f  the structure work together  in a coherent  way. In this respect I agree 
with the "doc t r ine"  o f  Goguen  et al. (1973): " A n y  species o f  mathematical  
structure is represented by a category whose objects "are of  that  s tructure" 
and whose morphisms  "preserve"  it. 

A category may be thought  o f  in the first instance as a universe for a 
part icular  kind of  mathemat ical  discourse. In this context one may ask how 
to choose the suitable category (universe o f  discourse) fitting the demands  
o f  the considered problem. The answer may be sought in category theory 
itself, because the theory allows one to construct  the appropria te  structures 
starting f rom very few general conditions. The realization o f  the objects o f  
a category obtained in such a way by concrete sets equipped with some 
sort o f  structure is one o f  the last stages o f  our  inquiry. 
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In Posiewnik (1985) I used Scott's (1982) category of information 
systems and argued that it is a suitable category for a constructive description 
of the structure of physical situations. In the sequel I will denote the above 
category by the symbol IS. 

In the choice of  syntax I was guided by two main ideas. The first one 
may call ontological. To quote van Weizs~icker (1975), "But this description 
of what we, finite minds in time, can know would be meaningless if the 
reality which we know did not conform to this structure of  our understand- 
ing. (One may suppose that in such a case we would not exist). Calling the 
facts we can know information we should expect that reality offers an 
information-like structure to our research." 

It follows that similar constructions, perhaps on a very general level 
of  abstraction, should be used in the semantics of  description of physical 
situations as in the foundations of  the mathematical  theory of computation. 

The second idea may be called pragmatic: I f  we try to develop a 
mathematical model of  the real world in the spirit of  constructivism, then 
the most important notion in this context is that of  approximation.  

The above ideas are implemented in a natural way in the structure of 
the category IS. 

An extra bonus of the category of information systems is that the 
category is a Cartesian closed one, and so it can be interpreted as a theory 
of types, where objects (the sets of  elements) represent types in the theory 
and moreover the higher types are of  a very constructive nature. Elements 
of  information systems of different types, e.g., elements representing states 
(methods of preparation),  observables (methods of observation, measure- 
ments) and transmitters (operations on states), enter into the theory on an 
equal abstract footing (as elements of objects of  the same category IS). 

2. I N F O R M A T I O N  SYSTEMS 

In Posiewnik (1985) I proposed to describe individual physical systems 
(quantum or classical) with the aid of  structures called information systems. 
Information systems are already used in the mathematical  theory of compu- 
tation. I argued that in each theoretical description of the phenomenology 
of a preparat ion-observat ion process one can identify the set of  all pure 
states of  a physical system with the set of  total elements of  some information 
system. 

For details concerning information systems, see Scott (1982) and 
Posiewnik (1985); for convenience I recall here some definitions and ter- 
minology. 

An information system is a structure (/9, A, Con, ~-). In our approach 
D is a set of  properties of  a physical system, and A c D is the conjunction 
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of  all essential properties; A is the property engraved in each state of  our 
system. Con is a family of  finite subsets of  D;  if u c Con, then the properties 
from u can be thought of  without contradiction as "being together," so that 
they can be gathered together into "one thing." The symbol ~- denotes a 
binary relation between members  of  Con and members of  D (we interpret 
the relation as a semantical relation of implication: if u c Con and X ~ D, 
then u ~- X iff whenever the system has the properties belonging to u, then 
it has property X) .  

Some very simple and natural axioms are postulated for the family 
Con and relation ~- [for details see Posiewnik (1985)]. In most of  the 
interpretations of  the "logic" of  physical systems one can easily point out 
the structure of  an information system. 

I argued that the (partial) state of  one given physical system at time 
to is uniquely determined by a set of  properties engraved in the system by 
a preparat ion procedure and actual at that time to (Piron, 1976). The pure 
state may be identified with the collection of all actual properties of  the 
system. This is, indeed, precisely the role demanded of a pure state 
specification, namely to determine a maximally informative (maximally 
precise) consistent description of a physical system. Therefore, the subsets 
of  properties that can be taken to define the states of a system should be 
consistent in themselves and deductively closed. 

Definition. The states of  a physical system represented by an information 
system A = (DA, Cona,  Aa, ~a )  are those subsets x of  DA where: (i) all 
finite subsets of  x are in Cona ,  and (ii) whenever u _~ x and u ~--A X~ then 
X c x .  

The set of  all such states is written as JA I. 
A state that is not included in any strictly larger state from the set IAI 

is called a pure state; the set of  pure states is denoted by TOtA. 
In the theory of information systems we have a very natural notion of 

topology. 

Definition (Scott, 1982). Let A be an information system. The informa- 
tion topology in the set A of all states is generated by a family of  neighbor- 
hoods of the form 

[U]A = {y e lal: u _c y}, where u c Con A 

A neighborhood [u] of  a state x ~ IAI collects together all those states 
sharing the same (finite) amount  of information u _c x. 

The main theorem concerning the topological structure of  the set Tota 
of  all pure states is the following: 

Proposition 1 (Scott, 1982). The space TOtA is a totally disconnected, 
compact  Hausdorff space. 
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Now we shall prove: 

Proposition 2. Let a physical system be described in terms of an informa- 
tion system A = (DA, AA, COnA, ~--a) such that the family COnA is countable 
(a sufficient condition for that is f.e. the countability of  DA, which is not 
such a bold assumption; as a matter of  fact, nothing in physics suggests 
noncountability). 

Then the set TOta of pure states of our system is homeomorphic  to a 
subset of  the Cantor discontinuum. 

Proof Topology in the set ]A] of  states is generated by the family 
{[U]A, U C COnA} of neighborhoods. The neighborhoods are in a one-one  
correspondence with the elements of COnA, so the space IA] satisfies the 
second axiom of countability. TotA as a subspace of [A] is second-countable, 
too. Every compact  space is uniformizable; therefore, from Proposition 1, 
we see that the space TotA is uniformizable and second-countable and it 
follows (Semadeni, 1971) that TotA is a metrizable separable space. 

The Cantor cube 2 ~ consists of all sequences a = (ao, a l ,  a 2 . . . .  ) of 
numbers 0 and 1, provided with the product topology. 

I f  a c T ~ then 

oo 2an 
k=n~o~-~=qo(ao, a l , . . .  ) (1) 

is a number  in the closed interval I = [0, 1]. The set 1 of  all such numbers 
is called the Cantor discontinuurn. It can be shown that the map ~: T ~ - l 
given by (1) is a homeomorphism (the space ! is equipped with the natural 
R 1 topology). 

Every compact,  totally disconnected metrizable space is homeomorphic  
to a subset of  2 ̀0 (Semadeni, 1971), so from the above it is homeomorphic  
to a subset of  the Cantor discontinuum I. 

TOta is a compact,  totally disconnected metrizable space, and this 
assertion ends the proof. [] 

It is rather obvious that states can be thought of  as answers to numerous 
"yes -no"  questions, i.e., as points of the Cantor cube. Therefore, the set 
TOtA is isomorphic to a subset of  the Cantor discontinuum. But we have 
shown something more, namely that this isomorphism is a topological one, 
i.e., the set of pure states can be conveniently embedded into the Cantor 
set l c  [0, 1] so as to preserve the topological structure. The states that are 
similar (near) in the information topology, i.e., the states that have many 
actual properties in common,  are represented by points of  the Cantor 
discontinuum that are near in R 1. 
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3. A R E P R E S E N T A T I O N  T H E O R E M  

Definition (de Vries, 1972). A topological transformation group (ttg) or 
a G-space is a triple (G, X, ~-) in which G is a topological group (the phase 
group), X is a topological space (the phase space), and ~" (the action of  
G on X)  is a continuous function ~-: G x X - - > X  such that 

~(e ,x )=x ,  zr(s, er(t,x))= Tr(s. t,x) for all s, tE 
G, x e X  

(e denotes the unit of the group G). Let us assume that we are dealing with 
a concrete physical system represented in our formalism by an information 
system: A = (DA, ConA, AA, ~-A) and that the time evolution of the system 
is given by a topological transformation group (it is a relatively simple type 
of  dynamics). 

Because we want to describe a reversible time evolution of pure states 
of the system A, in our case the phase group G is simply the additive group 
R 1 and the phase Space X is the space TOtA equipped with the Scott's 
topology. It is rather a difficult task to investigate the properties of a general 
nonlinear topological transformation group, even in the R 1 case. For this 
reason we may try to find a suitable representation for our ttg (i.e., morphisms 
in the category of topological transformation groups) into special objects 
(Le. linear transformation groups) whose structure is better understood. 

In many cases similar to ours of time evolution of physical systems, 
the special objects that are targets for representation are related to Hilbert 
spaces. Let L2(R1) denote the real Hilbert space consisting of all real-valued 
functions that are square-summable. Everything below can be done if one 
admits complex-valued functions as well. 

Proposition 3. Let a physical system be represented by an information 
system A = (DA, AA, C O n A ,  [--A) with a countable family C o n  A. Then any 
ttg (R ~, TOtA, ~r) corresponding to a "smooth" time evolution of our system 
has a linear Hilbert space representation (R 1, L2(R~), p). 

Proof We use the following theorem: 
Theorem (de Vries, 1972). Let (R I, X, or) be a topological transforma- 

tion group. If X is a compact, metrizable space and if the action of R ~ on 
X by o- is such that the set of invariant points in X [that is, the set 
{x e X: o-(t, x) = x for all t ~ R1}] is homeomorphic to a subset of R ~, then 
there is a topological embedding ~: X ~  L2(R ~) such that (R l, L2(R~), p) 
is a Hilbert space representation of  ttg (R 1, X, o-), i.e., 

(VS. o-)(t, .) =p( t ,  ~ ( . ) )  for all t c R  ~ 

The mapping (D: X ~  L2(R j) is defined by the equality 

(~ (x))(t)=--f(t)q~((7(t, x)) 
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where  ~o: X ~  R 1 is a b o u n d e d ,  con t inuous  funct ion ,  say Iq~(x)[<~ 1 for all 
x ~ X  

f ( t )  = e x p ( - l t l )  

(this f is a p r o p e r  weight  funct ion  on R~), and  

e x p ( - l s [ )  ~ ( s + t )  []  
[p(t ,  Y)](s)  - e x p ( - l s  + t[) 

In  our  case the set TOtA of  pure  states is h o m e o m o r p h i c  to a subset  o f  
the Can to r  d i s con t inuum I c I c R~; hence,  the set o f  ~r-invariant states is 
h o m e o m o r p h i c  to a subset  o f  R ~. Moreover ,  TOta is a compac t  met r izab le  
space;  consequent ly ,  the thesis  o f  de Vries '  t heo rem holds  for  ttg (R 1, 
To ta ,  ~) .  

Remarks .  1. The m a p p i n g  t ~ p ( t ,  �9 ) is a fa i thful  r ep resen ta t ion  o f  R l 
as a g roup  o f  b o u n d e d ,  inver t ible ,  l inear  ope ra to r s  on the Hi lbe r t  space  
L2(R1). 

2. The  group  p does  not  d e p e n d  on ~. All  in fo rmat ion  abou t  the 
dynamics  in the  pure  state space  TOtA is con ta ined  in the " w a v e "  funct ion  
[ ~ ( x ) ] ( t ) ,  X C TOrA. 
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